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Abstract

It is often a challenging task if we are asked to find the locus that depends on other curves, but
it can become intuitive if we use a technological tool to find the trace of the locus first and later
find the equation analytically. In this paper, we shall see that when we reverse the direction of
traveling for a point on one curve, and ask the locus for the corresponding curve, the task becomes
interesting and non-trivial. In many instances, since we have involved several parameters when
constructing a locus curve, it is often that we may construct a family of new parametric curves
from the existing closed curve. We will also outline ways of extending locus curves found in 2D to
corresponding ones in 3D.

1 Introduction
Finding a curve defined by the locus of a moving point has been popular and is often asked on Gaokao
(a college entrance exam) in China. There have been several exploratory activities (see [6] [9], and
[11]) derived from Chinese college entrance exam practice problems ([10]). In Section 2, we are asked
to find the locus that is determined by moving points on some respective circles, when suitable mild
conditions are imposed; in particular, one of the moving points is traveling in the opposite direction
(clockwise direction). In Section 3, we look for the locus that is produced by linear combinations of
vectors, where points on respective curves might be traveling in reverse directions. Surprisingly, we
are able to create a new family of interesting graphs by using such construction. In Section 4, we
see how we can generate interesting locus curves when points are traveling in certain directions along
three respective curves. As a result, cardioid-shape curves can be generated. (See Figures 6(a) or
6(b).) In Section 5, we attempt to generalize our locus curves from 2D into corresponding 3D locus
surfaces (we shall do this either by a suitable rotation of the 2D locus curve or by considering some
ellipsoids as “generated” by tangent spheres rotating around big circles).

Results in this paper rely on extensive and nontrivial use of parametric equations of curves and
surfaces in 2D and 3D but, with the help of technological tools, it is natural to explore the trace of
a possible locus before attempting to find a complete analytic or algebraic solution is much more
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accessible, convincing and intuitive to students. In this paper, in addition to solving simple cases by
hand, we typically construct a potential solution geometrically using the trace feature of a dynamic
geometry system (DGS) such as ClassPad Manager [2] or GeoGebra [3]. Secondly, we ask for a sym-
bolic answer if possible, by using a symbolic geometry system (SGS) such as Geometry Expressions
[4]. Finally, we use a computer algebra system (CAS) such as Maple [7] or maxima [8] to verify that
our analytic solutions are identical to those obtained by using SGS.

2 Locus Of Linear Combinations
Learning parametric equations is quite important in many high school or college curriculum. We have
seen the importance of using vectors when finding the locus of moving points in [1]. The locus curve
becomes non-trivial if we reverse the direction of traveling for the moving point on a curve when
finding the locus.

In order to gain familiarity and intuition about the effect reversing the direction of travel around a
reference curve has on the corresponding locus, let us consider the locus generated by the midpoint
of rotating point A on unit circle C1, and rotating points B and B′ on circle C2 centered at the origin
and with given radius r > 1. It’s clear that when A and B travel both in counterclockwise direction,
locus generated by midpoint M is the circle C centered at the origin and with radius (r+1)/2, but for
A traveling in counterclockwise direction and B′ traveling in clockwise direction, locus generated by
midpoint M ′ is the ellipse centered at the origin and with axis of length r + 1 and r − 1. Exploration
can be found in [S1].

As a second example, suppose we are given three circles C1, C2 and C3 that are shown in Figure
1(a). We assume C1, C2 and C3 centered at A = (0, 0), B = (a, b), C = (c, d) and radii of r1, r2

and r3 respectively. Let D, E and F be three moving points on these three circles, C1, C2 and C3,
traveling all in the counterclockwise direction, respectively. We are interested in finding the locus G
satisfying −−→

DG = r
−−→
DE + s

−−→
DF.

Then it is not difficult to prove the locus of G is a circle, where r and s ∈ (0, 1) . We note that
−→
OG =

−−→
OD+r

−−→
DE+s

−−→
DF. We write

[
x1(r1, t)
y1(r1, t)

]
=

[
r1 cos t
r1 sin t

]
,

[
x2(a, r2, t)
y2(b, r2, t)

]
=

[
a + r2 cos t
b + r2 sin t

]
and

[
x3(c, r3, t)
y3(d, r3, t)

]
=

[
c + r3 cos t
d + r3 sin t

]
. Then

−→
OG =

−−→
OD + r

−−→
DE + s

−−→
DF can be written as

[
x4(a, c, r1, r2, r3, r, s, t)
y4(b, d, r1, r2, r3, r, s, t)

]
=

[
x1(r1, t)
y1(r1, t)

]
+r

[
x2(a, r2, t)− x1(r1, t)
y2(b, r2, t)− y1(r1, t)

]
+s

[
x3(c, r3, t)− x1(r1, t
y3(d, r2, t)− y1(r1, t)

]
.

After simplifying, we see[
x4(a, c, r1, r2, r3, r, s, t)
y4(b, d, r1, r2, r3, r, s, t)

]
= ((−r − s + 1) r1 + rr2 + sr3)

[
cos t
sin t

]
+

[
ar + cs
br + ds

]
,

which represents a circle for t ∈ [0, 2π], r and s ∈ (0, 1) . We depict three circles when a = 1, b =
−1, c = 2, d = 0.5, r1 = 2, r2 = r3 = 1 in Figure 1(a), and the locus in red when r = 1

2
and s = 1 in
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Figure 1(b))

Figure 1(a) Three moving
points on three respective

cirlces.

Figure 1(b). Locus in red when
r = 1

2
and s = 1

Figure 1(c). Locus in red
when F is traveling clockwise

Main Problem: It is interesting to see that the locus G, satisfying
−−→
DG = r

−−→
DE + s

−−→
DF , where r

and s ∈ [0, 1] , will not be a circle when we choose the point D, E or F to be traveling in a clockwise
direction on three circles, C1, C2 and C3 respectively.

For example we consider the scenario when moving points D and E travel in the counterclockwise
direction but F travels in the clockwise direction. We shall show that the locus to be an ellipse. We
write D = (r1 cos t, r1 sin t) , E = (a + r2 cos t, b + r2 sin t) and F = (c + r3 cos t, d− r3 sin t) . We
see the locus

−→
OG =

−−→
OD +

−−→
DG, where

−−→
DG =

−−→
DE +

−−→
DF = (a + (r2 − r1) cos t, b + (r2 − r1) sin t)

+ (c + (r3 − r1) cos t, d− (r3 + r1) sin t)

= ((a + c) + (r2 + r3 − 2r1) cos t, (b + d) + (r2 − r3 − 2r1) sin t) .

This implies that the locus
−→
OG =

−−→
OD +

−−→
DG

= (r1 cos t, r1 sin t) +

((a + c) + (r2 + r3 − 2r1) cos t, (b + d) + (r2 − r3 − 2r1) sin t)

= ((a + c) + ((r2 + r3 − r1) cos t) , (b + d) + (r2 − r3 − r1) sin t)

to be an ellipse shown as follows:(
x− (a + c)

r2 + r3 − r1

)2

+

(
y − (b + d)

r2 − r3 − r1

)2

= 1.

We depict three circles when a = 1, b = −1, c = 2, d = 0.5, r1 = 2, r2 = r3 = 1 in Figure 1(a), and
the locus in red when r = 1

2
and s = 1 in Figure 1(c). More exploration can be found in [S2]. We

present the following scenario of finding the locus when reversing the traveling of one point.
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2.1 Locus of tangent circles
We consider a fixed circle C1 that is centered at A with radius r1 (see the circle in black in the Figure
2(a) or 2(b)) and the second circle C2 with fixed radius r2 and r2 < r1 that is centered at B (see the
circle in blue in the Figure 2(a) or 2(b)) and is tangent to C1 at the point of tangency E. We let the
point E travel in the counterclockwise direction. Let F be a moving point on C2 and move in the
clockwise direction, we shall find the locus for the point F . We note that the Figure 2(a) shows the
circle C2 is interiorly tangent to the circle C1 while the Figure 2(b) shows the circle C2 is exteriorly
to the circle C1. We shall show that the locus F in both cases are ellipses.

Figure 2(a). One circle
is moving insribed

within the other circle.
Figure 2(b). One circle is moving outside

the other circle.

Without loss of generality, we assume the circle at A is x2 + y2 = r2
1 and the circle centered at

B is (x− a)2 + (y − b)2 = r2
2, where r1 > r2. We write F = (x, y), and we want to find

−→
OF =

−→
AF =

−→
AE +

−→
EF.

Example 1 Suppose the circle C2 is interiorly tangent to the circle C1. Then, since E ∈ C1 ∩C2, we
write E = (r1 cos t, r1 sin t) = (a+r2 cos t, b+r2 sin t) and note that

−→
EF = (x−r1 cos t, y−r1 sin t).

Therefore,
−→
AF =

−→
AE +

−→
EF =

[
a + r2 cos t
b + r2 sin t

]
+

[
x− r1 cos t
y − r1 sin t

]
=

[
a + x + (r2 − r1) cos t
b + y + (r2 − r1) sin t

]
.

Since F is traveling clockwise at the circle C2, it satisfies the equation
[

a + r2 cos (−t)
b + r2 sin (−t)

]
=

[
a + r2 cos t
b− r2 sin t

]
, which implies [

x
y

]
=

[
r2 cos t− (r2 − r1) cos t
−r2 sin t− (r2 − r1) sin t

]
=

[
r1 cos t

(−2r2 + r1) sin t

]
.

Therefore, the locus satisfies the equation of the ellipse as shown below(
x

r1

)2

+

(
y

r1 − 2r2

)2

= 1.

Example 2 Suppose the circle C2 is exteriorly tangent to the circle C1. Then, when t = 0, E is
at t = π of C2, therefore, we need to write E = (r1 cos t, r1 sin t) = (a + r2 cos (t + π) , b +
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r2 sin (t + π)) = (a− r2 cos t, b− r2 sin t) and note that
−→
EF = (x− r1 cos t, y− r1 sin t). Therefore,

−→
AF =

−→
AE +

−→
EF =

[
a + r2 cos (t + π)
b + r2 sin (t + π)

]
+

[
x− r1 cos t
y − r1 sin t

]
=

[
a + x− r1 cos t− r2 cos t
b + y − r1 sin t− r2 sin t

]
. Since F is traveling clockwise at the circle C2, it satisfies the equation of

[
a + r2 cos (−t)
b + r2 sin (−t)

]
=[

a + r2 cos t
b− r2 sin t

]
, which implies[
x
y

]
=

[
r2 cos t
−r2 sin t

]
−

[
−r1 cos t− r2 cos t
−r1 sin t− r2 sin t

]
=

[
(2r2 + r1) cos t

r1 sin t

]
Therefore, the locus satisfies the equation of the ellipse as shown below(

x

2r2 + r1

)2

+

(
y

r1

)2

= 1.

The Figures 2(a) and 2(b) show when r1 = 3 and r2 = 1 in both cases. We leave the following similar
problems as an exercise for readers to explore.

Exercise 3 We first fix the circle C1 (see the blue circle in Figure 3(a) or 3(b)). Next, the second
moving circle C2 is such that C1 is inscribed in the circle C2 and tangent at a point B. Lastly, the
circle C3 is in the exterior of the circle C1 and tangent at B also. Let both circles C2 and C3 be
moving in the counterclockwise direction. If the point C is moving in the clockwise direction on C3,
we need to find the locus

−→
OC in this case.

Figure 3(a). Locus G when t = 0 Figure 3(b). Locus G when t = π

The Figures 3(a) and 3(b) above show the locus in red when the equation for the circle C1 is
x2 + y2 = 1, the radii for the circles C2 and C3 are about 2.610153 and 0.9447343 respectively.

3 Generating Families Of Interesting Curves
We first present an example that shows the locus obtained from linear combinations of vectors can
create families of interesting closed curves. Next, we discuss if we reverse the direction of traveling
for one curve, we shall see some unexpected interesting locus curves.
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Example 4 We consider the ellipse of C1, [x1(t), y1(t)] = [2 cos t, sin t)], the cardioid of C2, [x2(t), y2(t)] =
[(1− cos t) cos t, (1− cos t) sin t] and the circle of C3, [x3(t), y3(t)] = [cos t, sin t], where t ∈ [0, 2π].
If I, F and G are moving points on [x1(t), y1(t)], [x2(t), y2(t)] and [x3(t), y3(t)] respectively, travel-
ing all in counterclockwise directions. What is the locus J, that is on r

−→
IF + s

−→
IG, where r, s are real

numbers?

It is trivial to see the locus J satisfies
−→
OJ =

−→
OI + r

−→
IF + s

−→
IG,

where. Thus if [x4(t), y4(t)] represents the locus curve of C4, we have
[

x4(r, s, t)
y4(r, s, t)

]
=

[
x1(t)
y1(t)

]
+

r

[
x2(t)− x1(t)
y2(t)− y1(t)

]
+ s

[
x3(t)− x1(t)
y3(t)− y1(t)

]
. We depict the graph for

[
x4(1, 1, t)
y4(1, 1, t)

]
, t ∈ [0, 2π] ,

which represents a double folium in blue in Figure 4(a). We see an interesting three-leaf rose if we

use
[

x4(2, 1, t)
y4(2, 1, t)

]
,where t ∈ [0, 2π] , in blue in Figure 4(b).

Figure 4(a). A double folium in
blue.

Figure 4(b). A three-leave rose
in blue

Now we ask for the locus if we reverse the traveling direction for any one of the parametric curves
C1, C2 or C3. For example, suppose we reverse the traveling direction for [x1(t), y1(t)] from counter-
clockwise to clockwise, then its parametric equation is written as [x1(−t), y1(−t)], where t ∈ [0, 2π].
As a result, the locus is[

x∗4(r, s, t)
y∗4(r, s, t)

]
=

[
x1(−t)
y1(−t)

]
+ r

[
x2(t)− x1(−t)
y2(t)− y1(−t)

]
+ s

[
x3(t)− x1(−t)
y3(t)− y1(−t)

]
,

where t ∈ [0, 2π], r and s are real numbers. Explorations can be found in [S3]. We pose the following
interesting questions, whose Maple explorations can be found in [S3] also.

3.1 Open questions
1. For real numbers r and s, consider the family of curves for [x∗4(r, s, t), y

∗
4(r, s, t)] in the preced-

ing Example, find the best values r and s so that (a) the plot for [x∗4(r, s, t), y
∗
4(r, s, t)] encloses
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all the plots from [x1(t), y1(t)] , [x2(t), y2(t)] and [x3(t), y3(t)]. (b) The plot of [x∗4(r, s, t), y
∗
4(r, s, t)]

leaves the smallest gap for C4−(C1 ∪ C2 ∪ C3) . We describe two possible scenarios,
[
x∗4(

1
4
,−.55072, t), y∗4(

1
4
,−.55072, t)

]
and

[
x∗4(

1
8
,−.37681, t), y∗4(

1
8
,−.37681, t)

]
that are shown in green color of the Figures 5(a) and

5(b) respectively.

Figure 5(a). Plot for s = −0.55072
of

[
x4(

1
4
,−s, t), y4(

1
4
,−s, t)

]
in

green

Figure 5(b). Plot for s = −.37681 of[
x4(

1
8
, s, t), y4(

1
8
, s, t)

]
in green

2. Here we consider the following question: We are given three closed curves C1, C2 and C3

represented by [x1(t), y1(t)] , [x2(t), y2(t)] and [x3(t), y3(t)], respectively. If I, F and G are
moving points, which can be in counterclockwise or clockwise direction on any one of the
C1, C2 and C3 respectively. Let [x4(r, s, t), y4(r, s, t)] represent the locus J such that

−→
OJ =

−→
OI + r

−→
IF + s

−→
IG, where r, s are real numbers. Does there always exist r and s such that the

plot of [x4(r, s, t), y4(r, s, t)] which will leave the smallest gap for C4 − (C1 ∪ C2 ∪ C3)?

3. Extend our observations in 2D, mentioned in item 2 above, to corresponding ones in 3D.

4 Generating Interesting Curves With Three Circles
In view of Section 2.1, in which the locus generated is an ellipse when two circles are considered, we
explore the locus when three circles are considered. Explicitly, in this section we find the parametric
equation of the curve corresponding to the locus generated by a point that moves in a “circle” C3,
arranged in a similar way to a spirograph together with circles C1 and C2, as described below.

4.1 Circle C3 exteriorly tangent to circle C2

In the simplest case, we can assume that C1, shown in blue in the figures of this section, is the unit
circle x2 + y2 = 1. The circle C2 of radius r2 and moving center A, shown in black in the figures
of this section, rotates in counterclockwise direction keeping externally tangent to C1 at the point
B = (cos(θ), sin(θ)), for θ ∈ [0, 2π]. Next, for r and γ given let E = r(cos(γ), sin(γ)) be a point
“exterior” to C2, and let F1 and F2 be the points of intersection of the circle C2 with the line AE.
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The first problem is to describe the locus of a point G+ traveling in counterclockwise direction
along the “circle” C3, shown in orange in figures of this section. In fact,

G+ = E + dr2,r,γ(θ)(cos(θ), sin(θ))

travels along a “family of circles” C3 of variable radius, such that each one of them is centered at E
and is tangent exteriorly to C2 at F

.
= F1, the point between A and E. To keep the exteriorly tangency

condition, point E must be chosen outside the circle C, shown in light grey in Figure 6(a) and 6(b),
which is centered at the origin and has radius 2r2 − 1.

For example, the curve gr2,r,γ,+ corresponds to the locus generated by G+ when r2 = 3 and r = 5,
and is shown in red in Figures 6(a) and 6(b) for γ = π/4 and γ = 3π/4, respectively.

Figure 6(a). Locus generated by G+ for
E(r = 5; γ = π/4).

Figure 6(b). Locus generated by G+ for
E(r = 5; γ = 3π/4).

Let gr2,r denote the curve for the locus generated by G+ when γ = 0 (shown in red and dotted style
in the figures of this section). It is clear that gr2,r,γ can be obtained by a rotation of this curve around
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the origin by the angle γ, as shown in Figure 7.

Figure 7. Locus generated by G+ as a rotation of the curve gr2,r

corresponding to E = (r = 5; γ = 0).

The previous result motivates us to study a more general setting: first we apply a scale factor e, so
that now C1 and C2 have, respectively, radius e and er2, and C2 rotates in counterclockwise direction
keeping externally tangent to C1 at the point B = e(cos(α+ θ), sin(α+ θ)), for θ ∈ [0, 2π]. Note that
initially, when θ = 0, the line segment OB makes an angle α with the x–axis. We consider now the
point E = er(cos(γ), sin(γ)) that must be chosen outside the circle C centered at the origin and with
radius e(2r2 − 1). Our problem becomes in finding the locus generated by the point

G′
+ = E + dr2,r,γ,e,α,β(θ)(cos(β + θ), sin(β + θ))

Note that initially, when θ = 0, the line segment EG′
+ makes an angle β with the x–axis.

In Figure 8(a) we see that a translation of gr2,r,γ by the vector (e − 1)r(cos(γ), sin(γ)), that
we called gr2,r,γ,e, followed by a dilation (or contraction) with respect to the point E by a factor e,
produces the curve denoted by g′r2,r,γ,e. Finally, as shown in Figure 8(b), a rotation of g′r2,r,γ,e around
the point E by the angle β − α produces the curve g′r2,r,γ,e,α,β,+ corresponding to the locus generated
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by G′
+. Explorations can be found in [S4].

Figure 8(a). Dilation by e = 3/2 when
E = (r = 5; γ = 5π/4).

Figure 8(b).Rotation when α = π/2 and
β = π.

For what said in the previous paragraphs, it is enough to determine the parametric equation of the
curve gr2,r. With the help of the CAS maxima (exploration can be found in [S5]), we get

gr2,r(t) = (r, 0) + dr2,r(t)(cos(t), sin(t)), t ∈ [0, 2π]

where

dr2,r(t) =

√
−2r2

√
2r(r2 − 1) cos(t) + r2 + (r2 − 1)2 + r2

2 + 2r(r2 − 1) cos(t) + r2 + (r2 − 1)2

A natural question is: what happens by considering a point G− traveling now in clockwise direction
along the “circle” C3? For example, the curve g′r2,r,γ,e,α,β,−, shown in green in Figure 9, corresponds
to the locus generated by G− for the values of the parameters used previously. We see that a rotation
of g′r2,r,γ,e around the point E by the angle β + α− 2γ produces the curve g′r2,r,γ,e,α,β,− (see [S4]).
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Figure 9. Locus generated by G traveling in clockwise
direction along C3.

4.2 Circle C2 interiorly tangent to circle C3

The second problem is to describe the locus of points H+ and H− traveling, respectively, in counter-
clockwise and clockwise direction along the “circle” C ′

3, shown in orange in Figure 10. In fact,

H± = E + d′r2,r,γ,e,α,β(θ)(cos(β ± θ), sin(β ± θ))

travels along a “family of circles” C ′
3 of variable radius, such that each one of them is centered at E

with C2 tangent interiorly to C ′
3 at F

.
= F2, the antipodal point to F1 on C2.

Let hr2,r denotes the curve for the locus generated by H+ when e = 1 and α = β = γ = 0. When
the sequence of plane transformations used in our first problem are applied to this curve, we get the
curve h′r2,r,γ,e,α,β,+ corresponding to the locus generated by H+. Explorations can be found in [S6].
So, it is enough to determine the parametric equation of the curve hr2,r ((exploration can be found in
[S7])), that turns out to be

hr2,r(t) = (r, 0) + d′r2,r(t)(cos(t), sin(t)), t ∈ [0, 2π]

where

d′r2,r(t) =

√
2r2

√
2r(r2 − 1)cos(t) + r2 + (r2 − 1)2 + r2

2 + 2r(r2 − 1)cos(t) + r2 + (r2 − 1)2

Finally, keeping fixed the values of the parameters, let us consider the curve h′r2,r,γ,e,α,β,− that
corresponds to the locus generated by H−. Again, a rotation of h′r2,r,γ,e around the point E by the
angle β + α− 2γ produces the curve h′r2,r,γ,e,α,β,− (see [S6]).
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For example, the curves h′r2,r,γ,e,α,β,±, shown in red/green in Figure 10, correspond to the locus
generated by H± when r2 = 3, r = 5, γ = 7π/4, e = 3/2, α = π/2 and β = π.

Figure 10. Locus generated by H+ and H−.

As a final remark, in future work we will study the inverse problems: that is, if we are given the locus
curves for G and H , respectively, find a way to construct three circles with all appropriate needed
parameters in order to reproduce the locus curves given.

5 3D Locus Surface By A Rotation Or Projection
We would like to extend our 2D locus curves discussed in the preceding sections to corresponding 3D
locus surfaces. We shall do this either by a rotation or a projection.

5.1 Surfaces generated by rotation
Since locuses generated in the preceding sections are (plane transformations of) curves that are sym-
metric with respect to the x–axis, it’s easy to visualize (but may be not so simple to graph) the surface
of revolution obtained by a rotation around x–axis of a given 2D locus curve (ellipsoids for the cases
considered in Section 2 and “heart shaped” surfaces for the cases in Section 4). Here we show how a
DGS with 3D graphics capabilities, in this case GeoGebra, can be used to construct these surfaces of
revolution, even without knowing the equation for the base 2D curve. To make these constructions we
take advantage of the dynamic features of this kind of software, creating animations in 3D of the locus
generated by a point moving in planes that can be rotated around the x–axis by an angle φ ∈ [0, π] (in
red in the figures of this section); the resulting trajectories produce a frame–wired style 3D graph that
simulates the surface of revolution sought. Exploration can be found in [S8]. As an example, Figures
11(a) and 11(b) correspond to the case when circle C2 with radius r2 = 3 turns exteriorly around the
circle C1 with radius r1 = 4 and centered at the origin.
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Figure 11(a). Ellipse on the plane z = 0 (φ = 0). Figure 11(b). Ellipse on the plane z = y (φ = π/4).

Then, we use a CAS, in this case maxima, to determine the parametric equation of the surface of
revolution under study, that in this case turns to be (exploration can be found in [S9]).

Sr1,r2 = ((r1 + 2r2) cos(u), r1 cos(v) sin(u), r1 sin(v) sin(u)); u ∈ [0, 2π], v ∈ [0, π]

Figure 12. Ellipsoid of revolution.
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If we know the parametric equation of a 2D curve having axial symmetry, by applying a suitable
matrix transformation we can get the parametric equation of the 3D curve that results of the “rotation”
of the base 2D curve, as imbedded in 3D space, by the angle φ around the axis of symmetry. In case
of the cardioid like curves generated with three circles in Section 4, for the curve gr2,r : [0, 2π] → R3

defined by gr2,r(t) = (g1(t), g2(t), 0), a simple calculation shows that the 3D curve obtained when
this curve is rotated by the angle φ around the x–axis is

gr2,r,φ(t) =

 g1(t)
g2(t) cos(φ)
g2(t) sin(φ)

 , t ∈ [0, 2π]

The corresponding surface of revolution is obtained by considering variable t and parameter φ as two
new valuables, say u and v, respectively:

Sr2,r(u, v) =

 g1(u)
g2(u) cos(v)
g2(u) sin(v)

 , u ∈ [0, 2π], v ∈ [0, π]

In Figure 13 we graph the 3D curve, and the respective surface of revolution, corresponding to the
curve generated by three circles when circle C3 with center in E(r = 5; γ = 0), turns exteriorly
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around the circle C2 with radius r2 = 3. Exploration can be found in [S10].

Figure 13. Heart shaped surface obtained by rotation.

5.2 Surface generated by projection
To simplify the subject, we consider in this section only ellipsoids of the form

x2

a2
+

y2

b2
+

z2

c2
= 1

where a ≥ b ≥ c. For the case a > b = c, the intersection of the corresponding ellipsoid of revolution
with the plane z = 0 is the ellipse x2/a2 + y2/b2 = 1, that can be obtained as the locus of a point F
moving along a circle C2 centered at a moving point B and with radius r2 = (a− b)/2, which rotates
exteriorly tangent to the circle C1 centered at the origin and with radius r1 = b, as shown in Example
2 of Section 2.1. Of course, this is also valid for the projection of this ellipsoid on the plane y = 0.
So, we can consider the revolution ellipsoid as “generated” by the sphere S2 centered at a moving
point B and radius r2 = (a − b)/2, which rotates tangent exteriorly to the sphere S1 centered at the
origin and with radius r1 = b. Explicitly, extending the construction in Section 2.1, as first step we
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let the sphere S2 rotates in “counterclockwise” direction, around the sphere S1 along its equator

C1(t) =

 r1 cos(t)
r1 sin(t)

0

 , t ∈ [0, 2π]

while a point F rotates in “clockwise” direction on the sphere S2 along its equator

C2(t) = B(t) +

 r2 cos(t)
r2 sin(t)

0

 , t ∈ [0, 2π]

Then, as second step we let the sphere S2 rotates in “counterclockwise” direction around the sphere
S1 along its meridian

C ′
1(t) =

 r1 cos(t)
0

r1 sin(t)

 , t ∈ [0, 2π]

while a point F ′ rotates in “clockwise” direction on the sphere S2 along its meridian

C ′
2(t) = B′(t) +

 r2 cos(t)
0

r2 sin(t)

 , t ∈ [0, 2π]

As shown in Figure 14, the locus generated by F and F ′ are projections of the ellipsoid of revolution
considered. Exploration can be found in [S11].

Figure 14. Projections of an ellipsoid of revolution.
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A natural question is, ¿Is it possible to use two tangent spheres in order to generate the projections
of an ellipsoid with axes of length 2a > 2b > 2c?

We found that if, after applying the first step described previously, we let the sphere S2 rotates in
“counterclockwise” direction tangent interiorly to the sphere S1 along its meridian

C ′′
1 (t) =

 0
r1 cos(t)
r1 sin(t)

 , t ∈ [0, 2π]

while a point F ′′ rotates in “clockwise” direction on the sphere S2 along its meridian

C ′′
2 (t) = B′′(t) +

 0
r2 cos(t)
r2 sin(t)

 , t ∈ [0, 2π]

then, as shown in Figure 15, the locus generated by F and F ′ are the projections of the ellipsoid

x2

(r1 + 2r2)2
+

y2

r2
1

+
z2

(r1 − 2r2)2
= 1

(exploration can be found in [S12]).

Figure 15. Projections of an ellipsoid not of revolution.
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6 Future Explorations
In view of the locus problems we discussed involving circles, we would like to explore if we can
replace a fixed circle by an ellipse. First, we recall the following applications, which arise from optics
in Physics area. In the differential geometry of curves, the evolute of a curve is the locus of all its
centers of curvature. Equivalently, it is the envelope of the normals to a curve. Caustic is the evolute
of the orthotomic curve. Caustic is also the locus of all its centers of curvature of orthotomic curve
or the envelope of the orthotomic normals. For example, if we are given an ellipse in blue in Figure
16. The diamond shape-like curve in red is called the caustic for the given ellipse. In other words, it
is the locus of all its centers of curvature shown in D′.

Figure 16. Caustic on an ellipse.

We shall consider the locus curve(s) resulted from the following steps:

1. We are given a fixed ellipse shown in blue in above figure.

2. We pick a moving point D on the blue ellipse, which we know that the purple circle shows the
circle of curvature at various point D.

3. At each circle of curvature, we pick another point F that is different from D.

4. If D travels in clockwise direction, we would like to find the locus F that is traveling in coun-
terclockwise direction.
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5. If D travels in counterclockwise direction, we would like to find the locus F that is traveling in
clockwise direction.

Just as we have discussed in Section 5, which we extended a 2D case using two circles to a 3D
ellipsoid. Another area we will explore is to generate a 3D surface by using three circles as we have
discussed in Section 4.

7 Conclusion
It is clear that technological tools provide us with many crucial intuitions before we attempt more
rigorous analytical solutions. Here we have gained geometric intuitions while using a DGS such as
ClassPad Manager [2] and Geometry Expressions [4] in Sections 2 and 3, or GeoGebra [3] in Sections
4 and 5. In the meantime, we use a CAS such as Maple [7] in Sections 2 and 3 or maxima [8] in
Sections 4 and 5, for verifying that our analytical solutions are consistent with our initial intuitions.
The complexity level of the problems we posed vary from the simple to the difficult. Many of our
solutions are accessible to students from high school. Others require more advanced mathematics
such as university levels, which are excellent examples for professional trainings for future teachers.

Evolving technological tools definitely have made mathematics fun and accessible on one hand,
but they also allow the exploration of more challenging and theoretical mathematics. We hope that
when mathematics is made more accessible to students, it is possible more students will be inspired to
investigate problems ranging from the simple to the more challenging. We do not expect that exam-
oriented curricula will change in the short term. However, encouraging a greater interest in mathemat-
ics for students, and in particular providing them with the technological tools to solve challenging and
intricate problems beyond the reach of pencil-and-paper, is an important step for cultivating creativity
and innovation.
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[S5] s5-Section4.1.wxm (wxMaxima worksheet for Section 4.1).

85

https://mathandtech.org/eJMT_June_2020/paper1/s1-Section1.ggb
https://mathandtech.org/eJMT_June_2020/paper1/s2-Section2.mw
https://mathandtech.org/eJMT_June_2020/paper1/s3-Example4.mw
https://mathandtech.org/eJMT_June_2020/paper1/s4-Section4.1.ggb
https://mathandtech.org/eJMT_June_2020/paper1/s5-Section4.1.wxm


The Electronic Journal of Mathematics and Technology, Volume 14, Number 2, ISSN 1933-2823

[S6] s6-Section4.2.ggb (GeoGebra worksheet for Section 4.2).

[S7] s7-Section4.2.wxm (wxMaxima worksheet for Section 4.2).

[S8] s8-Section5.1a.ggb (GeoGebra worksheet for Section 5.1 ellipsoid).

[S9] s9-Section5.1a.wxm (wxMaxima worksheet for Section 5.1 ellipsoid).

[S10] s10-Section5.1b.ggb (GeoGebra worksheet for Section 5.1 cardioid like curve).

[S11] s11-Section5.2a.ggb (GeoGebra worksheet for Section 5.2 ellipsoid of revolution).

[S12] s12-Section5.2b.ggb (GeoGebra worksheet for Section 5.2 ellipsoid not of revolution).
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